# Tetrapalladium Complex with Bridging Germylene Ligands. Structural Change of the Planar $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ Core 

Makoto Tanabe, ${ }^{\dagger}$ Naoko Ishikawa, ${ }^{\dagger}$ Mai Chiba, ${ }^{\dagger}$ Tomohito Ide, ${ }^{\dagger}$ Kohtaro Osakada, ${ }^{,{ }^{\dagger}}$ and Tomoaki Tanase ${ }^{\ddagger}$<br>${ }^{\dagger}$ Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan<br>${ }^{\ddagger}$ Department of Chemistry, Faculty of Science, Nara Woman's University, Kitauoya-higashi-machi, Nara 630-8506, Japan


#### Abstract

A complex with a planar hexagonal $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core, $\left[\operatorname{Pd}\{\mathrm{Pd}(\mathrm{dmpe})\}_{3}\left(\mu_{3}-\mathrm{GePh}_{2}\right)_{3}\right]$, was synthesized and characterized by X-ray and NMR measurements as well as by DFT calculations. 4-tert-Butylbenzenethiol converted the $\mathrm{Pd}_{4}$ complex into a hexapalladium complex, $\left[\left\{\mathrm{Pd}_{3}\left(\mu-\mathrm{GePh}_{2}\right)_{2^{-}}\right.\right.$ $\left.(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{GePh}_{2}\left(\mathrm{SC}_{6} \mathrm{H}_{4}{ }^{t} \mathrm{Bu}-4\right)\right)\right\}_{2}(\mu$-dmpe $\left.)\right]$, composed of two $\mathrm{Pd}_{3} \mathrm{Ge}_{3}$ units bridged by a dmpe ligand. The addition of CuI or AgI to the $\mathrm{Pd}_{4}$ complex yielded $[\mathrm{Pd}(\mu-\mathrm{MI})\{\mathrm{Pd}-$ (dmpe) $\left.\}_{3}\left(\mu_{3}-\mathrm{GePh}_{2}\right)_{3}\right](\mathrm{M}=\mathrm{Cu}, \mathrm{Ag})$, in which Cu or Ag bridges a $\mathrm{Pd}-\mathrm{Pd}$ bond of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core. The CuI adducts in solution undergo a pivot motion of the CuI on the surface of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ plane on the NMR time scale.


MUltinuclear transition metal complexes containing a planar arrangement of metal centers linked via metal-metal bonds are rare among transition metal clusters. ${ }^{1}$ Bridging or semibridging CO or CNR ligands, ${ }^{2}$ a pair of planar polyaromatic ligands, ${ }^{3}$ and bulky organic ligands were employed as the auxiliary ligands of planar multimetallic complexes. ${ }^{4}$ The $\pi$-acceptor character of the first two ligands and the steric hindrance of the last one stabilize the respective complexes. Bridging Si ligands ${ }^{5,6}$ having electron-releasing character have recently been found to form complexes having a planar multimetallic core. ${ }^{7-9}$ We also reported a tetrapalladium complex, $\left[\operatorname{Pd}\{\operatorname{Pd}(d m p e)\}_{3}\left(\mu_{3}-\mathrm{SiPh}_{2}\right)_{3}\right]$ (1), which contains a central $\mathrm{Pd}_{4} \mathrm{Si}_{3}$ unit composed of four Pd centers and three bridging silylene ligands. ${ }^{10}$


Although these complexes are expected to show unique chemical properties owing to their planar multimetallic core and reactive metal-silicon bonds, there have been few systematic studies of their reactions. In this paper, we present the synthesis and structure of a complex with a similar structure to 1 , but with a heavier group 14 element, Ge , as the coordinating atom. ${ }^{11}$ The skeletal change reactions of this complex also form unprecedented multinuclear complexes.

The treatment of a dipalladium complex with bridging digermene and germylene ligands, $\left[\{\operatorname{Pd}(\text { dmpe })\}_{2}\left(\mu-\mathrm{Ge}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\mathrm{GePh}_{2}\right)\right],^{12}$ with twice the molar amount of $\left[\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ and then with
equimolar dmpe afforded a tetrapalladium complex with bridging germylene ligands, $\left[\operatorname{Pd}\{\operatorname{Pd}(\mathrm{dmpe})\}_{3}\left(\mu_{3}-\mathrm{GePh}_{2}\right)_{3}\right]$ (2):


The reaction product contains only 2, $\mathrm{PCy}_{3}$, and $\left[\mathrm{Pd}(\mathrm{dmpe})_{2}\right]_{n}$ $(n=1,2),{ }^{13}$ as revealed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. Heating a mixture of the isolated 2 and dmpe (1:3) at $80^{\circ} \mathrm{C}$ regenerates $\left[\{\operatorname{Pd}(\text { dmpe })\}_{2}\left(\mu-\mathrm{Ge}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\mathrm{GePh}_{2}\right)\right]$, accompanied by the formation of $\left[\mathrm{Pd}(\mathrm{dmpe})_{2}\right]_{n}$. Although $\left[\mathrm{Pd}\left(\mathrm{SiHPh}_{2}\right)_{2}(\mathrm{dmpe})\right]$ reacted with $\left[\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ to produce 1 , the analogous reaction of $\left[\mathrm{Pd}\left(\mathrm{GeHPh}_{2}\right)_{2}(\right.$ dmpe $\left.)\right]$ with $\left[\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ yielded a dipalladium complex with bridging germyl ligands $\left[\left\{\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)\right\}_{2}\right.$ $\left.\left(\mu-\mathrm{GeHPh}_{2}\right)_{2}\right]^{14}$ rather than $\mathbf{2}$. Thus, the use of the dinuclear complex $\left[\{\mathrm{Pd}(\mathrm{dmpe})\}_{2}\left(\mu-\mathrm{Ge}_{2} \mathrm{Ph}_{4}\right)\left(\mu-\mathrm{GePh}_{2}\right)\right]$ as one of the starting materials enabled a smooth and selective formation of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ complex 2 . The reaction in eq 1 is reversible, and proper choice of the reaction conditions resulted in the formation of 2 in high yield.

Figure 1 shows the molecular structure of 2 with its $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core having one central Pd atom $\left(\mathrm{Pd}_{\text {cent }}\right)$, three edge Pd atoms $\left(\mathrm{Pd}_{\text {edge }}\right)$, and three bridging Ge atoms. These Pd and Ge atoms form a plane, as shown in Figure 1b. The distances between the $\mathrm{Pd}_{\text {cent }}$ and Ge atoms $(2.3207(7)-2.3344(7) \AA$ ) are close to the lengths of the $\mathrm{Pd}=\mathrm{Ge}$ bonds in mononuclear palladium germylene complexes, $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}=\mathrm{Ge}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}\right](\mathrm{R}=\mathrm{Et}, 2.330(5) \AA$; $\mathrm{R}=\mathrm{Ph}, 2.3281(4) \AA) .{ }^{15}$ The Pd and Ge atoms of 2 form a distorted hexagonal core with $\mathrm{Pd}_{\text {edge }}-\mathrm{Ge}$ distances (2.5545(7)$2.6037(7) \AA)$ and $\mathrm{Pd}-\mathrm{Pd}$ distances (2.7568(6)-2.7904(6) $\AA$ ) that are longer than the $\mathrm{Pd}_{\text {cent }}-\mathrm{Ge}$ distances. The $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core of $\mathbf{2}$ is larger than the $\mathrm{Pd}_{4} \mathrm{Si}_{3}$ core of $\mathbf{1}\left(\mathrm{Pd}_{\text {cent }}-\mathrm{Si}\right.$ bond of $\mathbf{1}=$ $2.2521(8)-2.2674(8) \AA)$. The three $\mathrm{Pd}_{\text {edge }}-\mathrm{Ge}-\mathrm{Pd}_{\text {edge }}$ bond angles of $2\left(136.68(2)-137.78(2)^{\circ}\right)$ are close to the $\mathrm{Pd}_{\text {edge }}-\mathrm{Si}-\mathrm{Pd}_{\text {edge }}$ angles of $1\left(138.00(3)-138.73(3)^{\circ}\right)$, and the hexagonal cores of $\mathbf{1}$ and $\mathbf{2}$ have similar shapes.

Density functional theory (DFT) calculations of complex 2 were conducted with the Gaussian 09 quantum chemistry program package (MPWB95/6-31G(d,p)). ${ }^{16}$ The geometry of the complex was optimized using the actual atom positions obtained by

[^0]
(b)


Figure 1. (a) Thermal ellipsoids (50\%) of 2 and (b) its $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ plane. Two crystallographically independent molecules exist. Selected bond distances $(\AA)$ and angles (deg) of one of the molecules: Pd1-Pd2 2.7824(6), Pd1—Pd3 2.7585(6), Pd1—Pd4 2.7836(6), Pd1—Ge1 2.3319(7), Pd1— Ge2 2.3207(7), Pd1-Ge3 2.3338(6), Pd2-Ge2 2.5921(6), Pd2-Ge3 2.5767(7), Pd3-Ge1 2.5637(7), Pd3-Ge3 2.5852(7), Pd4-Ge1 2.5895(7), Pd4-Ge2 2.5788(7), Pd3-Ge1-Pd4 137.05(2), Pd2-Ge2-Pd4 137.67(2), Pd2-Ge3-Pd3 136.71(2).

X-ray crystallography. The average $\mathrm{Pd}_{\text {cent }}-\mathrm{Pd}_{\text {edge }}$ and $\mathrm{Pd}_{\text {cent }}-\mathrm{Ge}$ bond distances of 2.796 and $2.363 \AA$ are close to those determined from the X-ray data ( 2.776 and $2.329 \AA$, respectively). The Wiberg bond index of $2\left(\mathrm{Pd}_{\text {cent }}-\mathrm{Pd}_{\text {edge }}=0.194, \mathrm{Pd}_{\text {cent }}-\mathrm{Ge}=\right.$ 0.541 , and $\left.\mathrm{Pd}_{\text {edge }}-\mathrm{Ge}=0.401-0.442\right)$ suggests that the $\mathrm{Pd}_{\text {cent }}-\mathrm{Ge}$ bond is stronger than the $\mathrm{Pd}_{\text {edge }}-\mathrm{Ge}$ bond and is consistent with the X-ray crystallographic results, which also show $\mathrm{Pd}_{\text {cent }}-\mathrm{Ge}$ bonds shorter than the $\mathrm{Pd}_{\text {edge }}-\mathrm{Ge}$ bonds. The charge population analysis of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core indicates a higher negative charge of the $\mathrm{Pd}_{\text {cent }}$ atom $(-0.56)$ than that of the $\mathrm{Pd}_{\text {edge }}$ atoms $(-0.47)$. The molecular orbitals obtained from the above calculations suggest a large contribution of the $\mathrm{Pd}_{\text {cent }}-\mathrm{Ge}$ and $\mathrm{Pd}_{\text {edge }}-\mathrm{Ge}$ bonds to stabilize the planar $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core (Supporting Information). ${ }^{17}$

The addition of an equimolar amount of $\mathrm{HSC}_{6} \mathrm{H}_{4}{ }^{t} \mathrm{Bu}-4$ to a hexane solution of 2 caused the separation of $\left[\left\{\mathrm{Pd}_{3}\left(\mu-\mathrm{GePh}_{2}\right)_{2^{-}}\right.\right.$ $\left.(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{GePh}_{2}\left(\mathrm{SC}_{6} \mathrm{H}_{4}{ }^{t} \mathrm{Bu}-4\right)\right)\right\}_{2}(\mu$-dmpe $\left.)\right]$ (3) as a yellow solid, as shown in eq 2 . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture indicated the accompanying formation of $\left[\mathrm{Pd}(\mathrm{dmpe})_{2}\right]_{n}$ and $\left[\mathrm{Pd}\left(\mathrm{SC}_{6} \mathrm{H}_{4}{ }^{t} \mathrm{Bu}-4\right)_{2}(\mathrm{dmpe})\right] .{ }^{18}$


Complex 3 is composed of two $\mathrm{Pd}_{3}\left(\mu-\mathrm{GePh}_{2}\right)_{2}(\mu-\mathrm{H})\left(\mu_{3}-\right.$ $\left.\mathrm{GePh}_{2}\left(\mathrm{SC}_{6} \mathrm{H}_{4}{ }^{t} \mathrm{Bu}-4\right)\right)$ units and a bridging dmpe ligand, as revealed by X-ray crystallography (Figure 2). Three Pd atoms of each unit are aligned almost linearly $\left(\mathrm{Pd} 1-\mathrm{Pd} 2-\mathrm{Pd} 3168.54(4)^{\circ}\right)$ and are bridged by two $\mathrm{GePh}_{2}$ ligands and a $\mathrm{GePh}_{2}\left(\mathrm{SC}_{6} \mathrm{H}_{4}{ }^{t} \mathrm{Bu}-4\right)$ ligand. A hydride ligand derived from the thiol bridges two Pd centers, Pd1 and Pd2. The distance between Pd1 and Pd2


Figure 2. Thermal ellipsoids (30\%) of 3. The molecule has a crystallographic point of symmetry at the midpoint of P3 and P3*. Selected bond distances $(\AA)$ and angles (deg): Pd1-Pd2 2.799(2), Pd2-Pd3 2.767(2), Pd3-S 2.501(3), Pd1—Ge1 2.436(2), Pd2-Ge1 2.386(2), Pd2-Ge2 2.411(2), Pd2-Ge3 2.380(2), Pd3-Ge2 2.582(2), Pd3Ge3 2.407(2), Ge2-S 2.466(3), Pd1-H1 2.2(1), Pd2-H1 2.0(2), Pd1-Pd2-Pd3 168.54(4), Pd2-Pd3-S 110.71(7), Pd1-Ge1-Pd2 70.94(5), Pd2-Ge2-Pd3 67.20(5), Pd2-Ge3-Pd3 70.63(5).
(2.799(2) $\AA$ ) is longer than that between Pd2 and Pd3 (2.767(2) $\AA$ ), in spite of the bridging coordination of the hydride to Pd1-Pd2. The thiolato is attached to Ge2 and Pd3, forming the $\mathrm{GePh}_{2}\left(\mathrm{SC}_{6} \mathrm{H}_{4}{ }^{\mathrm{t}} \mathrm{Bu}-4\right)$ ligand. An analogous $\overparen{\mathrm{M}-\mathrm{Ge}-\mathrm{S}}$ triangular bonding was reported in the thiolatogermyl iron complex. ${ }^{19}$ The dmpe bridges the two $\mathrm{Pd}_{3} \mathrm{Ge}_{3}$ units to form the hexanuclear
molecule, similar to $\left[\left\{\mathrm{Ni}\left(\mathrm{SiH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SiH}_{2}\right)(\text { dmpe })\right\}_{2}(\mu \text {-dmpe })\right]^{20}$ and $\left[\left\{\operatorname{Pd}\{\operatorname{Pd}(\text { dmpe })\}_{3}\left(\mu_{3}-\mathrm{SiHPh}\right)_{3}\right\}_{2}(\mu\right.$-dmpe $\left.)\right] .{ }^{10}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 3 shows the bridging hydrido signal at $\delta-2.48$, with the coupling of two $P$ nuclei of the chelating dmpe ligand $(J=13,94 \mathrm{~Hz})$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3 displays three characteristic signals at $\delta 23.8,16.3$, and -11.9 . The first two signals, with a large coupling constant $\left(J_{\mathrm{P}-\mathrm{P}}=33 \mathrm{~Hz}\right)$, are assigned to the chelating dmpe ligand, while the last signal is assigned to the bridging dmpe.

The reaction forming the hexapalladium complex 3 in the presence of the thiol involves the reorganization of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core. Scheme 1 summarizes the possible reaction pathway. ${ }^{21}$ Protonation of the central Pd atom of 2 by thiol forms the cationic intermediate A , which undergoes rearrangement of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core and elimination of $\mathrm{Pd}(\mathrm{dmpe})$ to produce the tripalladium intermediate $\mathbf{B}$. The partial dissociation of a dmpe ligand and coordination of the thiolato forms $\mathbf{C}$, which then undergoes dimerization with loss of a dmpe molecule. The formation of $\left[\mathrm{Pd}(\mathrm{dmpe})_{2}\right]_{n}$ and $\left[\mathrm{Pd}\left(\mathrm{SC}_{6} \mathrm{H}_{4}{ }^{t} \mathrm{Bu}-4\right)_{2}(\mathrm{dmpe})\right]$ in the reaction is attributed to further reaction of the $\mathrm{Pd}(\mathrm{dmpe})$ intermediate with dmpe and thiol, respectively. The isolated hexanuclear complex 3 is thermally stable and does not change its structure in solution, even at $60^{\circ} \mathrm{C}$. The addition of dmpe to a benzene $-d_{6}$ solution of 3 ([dmpe]/[3] = 0.5/1), however, formed a mixture of the tetranuclear complex $\mathbf{2}$ and $\left[\operatorname{Pd}(\text { dmpe })_{2}\right]_{n}$, which were identified from the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR peaks of the solution. ${ }^{22}$ Adams et al. recently reported a reversible structural change of their multinuclear complex. The complex $\left[\operatorname{Pd}\left\{\operatorname{Re}_{2}(\mathrm{CO})_{8}\left(\mu-\mathrm{SbPh}_{2}\right)(\mu-\mathrm{H})\right\}_{2}\right]$ releases its central Pd upon treatment with $\mathrm{PCy}_{3}$, while the resulting $\left[\left\{\operatorname{Re}_{2}(\mathrm{CO})_{8}\left(\mu-\mathrm{SbPh}_{2}\right)(\mu-\mathrm{H})\right\}_{2}\right]$ stores the Pd of $\mathrm{Pd}(\mathrm{dba})_{2}$ and regenerates the $\mathrm{Re}_{4} \mathrm{Pd}$ complex. ${ }^{23}$

## Scheme 1



Equimolar CuI or AgI reacts with complex 2 to cause their addition to a $\mathrm{Pd}-\mathrm{Pd}$ bond to afford the pentanuclear complexes $\left[\mathrm{Pd}(\mu-\mathrm{MI})\{\mathrm{Pd}(\text { dmpe })\}_{3}\left(\mu_{3}-\mathrm{GePh}_{2}\right)_{3}\right](4, \mathrm{M}=\mathrm{Cu} ; 5, \mathrm{M}=\mathrm{Ag}):$


4: $\mathrm{M}=\mathrm{Cu}, 72 \%$
5: $M=A g, 34 \%$
Figure 3 shows the X-ray structure of 4 . Both 4 and 5 retain the bonds between Pd and Ge atoms of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core but lose planarity owing to the bridging of Cu or Ag to a $\mathrm{Pd}-\mathrm{Pd}$ bond. Two Pd atoms and one Cu or Ag atom form a triangle composed of three $\mathrm{d}^{10}$ metals. The Pd1-Pd2 bond $(2.7367(8) \AA$ ) of 4 is shorter than the Pd1 - Pd3 (2.7964(8) Å) and Pd1 - Pd4 (2.7738(8) Å) bonds of 4 and the $\mathrm{Pd}_{\text {cent }}-\operatorname{Pd}_{\text {edge }}$ bonds of $2(2.7568(6)-$ $2.7904(6) \AA$ ). The presence of a $\mathrm{Cu}-\mathrm{Pd} 2$ bond (2.462(1) $\AA$ ) shorter than the $\mathrm{Cu}-\mathrm{Pd} 1$ bond $(2.632(1) \AA)$ and of a large $\mathrm{I}-\mathrm{Cu}-\mathrm{Pd} 2$ bond angle $\left(159.15(5)^{\circ}\right)$ suggests a more significant interaction of Pd 2 with the Cu atom than that of Pd 1 . The four Pd atoms of 4 are included in a plane, while one of the Ge atoms ( Ge 2 ) deviates from the plane by $0.95 \AA$ because of the elongation of the Pd1-Ge2 bond (2.384(1) $\AA$ ) compared with the other $\mathrm{Pd}_{\text {cent }}-\mathrm{Ge}$ bonds of 4 (Pd1-Ge1 2.358(1), Pd1-Ge3 $2.347(1) \AA)$. Trinuclear $\mathrm{Pt}(0)$ complexes, $\left[\mathrm{Pt}_{3}(\mu-\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)_{3-4}\right]$, were reported to react with $\mathrm{Cu}(\mathrm{I}), \operatorname{Ag}(\mathrm{I})$, and $\mathrm{Au}(\mathrm{I})$ to form heterometallic complexes with $M L(M=C u(I), \operatorname{Ag}(I) ; L=$ phosphine, halides) capping over the $\mathrm{Pt}_{3}$ face. The complexes 4 and 5 show the interaction of Cu and Ag with only the two Pd centers. ${ }^{24}$

The NMR results of 4 below room temperature show the dynamic behavior of the molecule on the NMR time scale. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 at room temperature exhibits two ipso carbon signals at close positions ( $\delta 156.5$ and 155.8) due to the presence of CuI-bonded and CuI-free sides of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$


Figure 3. (a) Thermal ellipsoids (50\%) of (a) 4 and (b) its $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ plane. Selected bond distances ( $\AA$ ) and angles (deg): $\mathrm{Cu}-\mathrm{Pd} 1$ 2.632(1), Cu-Pd2 2.462(1), Pd1—Pd2 2.7367(8), Pd1—Pd3 2.7964(8), Pd1— Pd4 2.7738(8), Pd1-Ge1 2.358(1), Pd1-Ge2 2.384(1), Pd1-Ge3 2.347(1), Pd2-Ge2 2.597(1), Pd2-Ge3 2.887(1), Pd3-Ge1 2.585(1), Pd3-Ge3 2.532(1), Pd4-Ge1 2.606(1), Pd4-Ge2 2.530(1), I-CuPd2 159.15(5), Pd3-Ge1-Pd4 136.39(4), Pd2-Ge2-Pd4 128.24(3), Pd2-Ge3-Pd3 131.34(3).


Figure 4. ${ }^{1} \mathrm{H}$ NMR spectra of 4 at $-90,-60,-30$, and $25^{\circ} \mathrm{C}$ in toluene- $d_{8}$.
core. Although X-ray crystallography showed a clear difference between $\mathrm{Pd}-\mathrm{Pd}$ bonds with bridging CuI and those without bridging CuI, three phenyl groups on the same face of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core are equivalent in the NMR spectrum. The spectra at low temperature show changes in the aromatic hydrogen peaks of the $\mathrm{GePh}_{2}$ ligands. Two ortho hydrogen signals of the $\mathrm{GePh}_{2}$ ligands are observed at $\delta 8.31$ and 7.74 with equal intensities at $25^{\circ} \mathrm{C}$ (Figure 4). Meta hydrogen signals corresponding to three hydrogens are observed at $\delta 7.33$, although the others overlap with the signals of other aromatic hydrogens. On cooling the solution to $-90^{\circ} \mathrm{C}$, a set of ortho hydrogen signals ( $\delta 8.31$ ) and the meta hydrogen signal are extremely broadened; these are assigned to the Ph groups on the Cu -coordinated side of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ plane. The peak width of the other ortho hydrogen signal at $\delta$ 7.74 changes to a much less significant degree.

Scheme 2 shows a plausible mechanism to account for the results: the cleavage and formation of a $\mathrm{Cu}-\mathrm{Pd}_{\text {edge }}$ bond occur rapidly and reversibly to cause the apparent pivot motion of CuI on the surface of the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ plane. The dissociation of CuI from 4 can be excluded on the basis of the two ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals of the phenyl groups. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 at $-90^{\circ} \mathrm{C}$ shows the broadening of the two ortho hydrogen peaks to a similar extent. Thus, CuI and AgI produce the complexes 4 and 5 , respectively, with similar structures in the solid state, but the behaviors of the two adducts are different in solution. ${ }^{25}$

## Scheme 2



In summary, we succeeded in isolating 2 , characterizing its structure, and carrying out its DFT analysis. The striking findings in this study are the formation of the tetrapalladium complex 2 from the mono- and dinuclear Pd complexes and the skeletal change of the planar $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core caused by thiol and CuI, which have the character of Brønsted and Lewis acids, respectively. The combination of low-valent Pd and the Ge ligand enabled the formation of the multinuclear complexes with various structures and their smooth conversion involving the skeletal change.

## ■ ASSOCIATED CONTENT

(s) Supporting Information. Experimental details and characterization data; MO interaction diagram for $\mathbf{2}$; and complete ref 16 . This material is available free of charge via the Internet at http://pubs.acs.org.

## ■ AUTHOR INFORMATION

## Corresponding Author

kosakada@res.titech.ac.jp

## - ACKNOWLEDGMENT

This work was financially supported by Grants-in-Aid for Scientific Research for Scientific Research (No. 19205008) and for Scientific Research on Priority Areas (No. 19027018) from the Ministry of Education, Culture, Sport, Science, and Technology, Japan.

## - REFERENCES

(1) Braunstein, P., Oro, L. A., Raithby, P. R., Eds. Metal Clusters in Chemistry, Vol. 1; Wiley-VCH: Weinheim, 1999.
(2) (a) Doyle, G.; Eriksen, K. A.; van Engen, D. J. Am. Chem. Soc. 1986, 108, 445-451. (b) Albano, V. G.; Azzaroni, F.; Iapalucci, M. C.; Longoni, G.; Monari, M.; Mulley, S.; Proserpio, D. M.; Sironi, A. Inorg. Chem. 1994, 33, 5320-5328. (c) Albano, V. G.; Iapalucci, M. C.; Longoni, G.; Manzi, L.; Monari, M. Organometallics 1997, 16, 497-499. (d) Egold, H.; Schraa, M.; Flörke, U.; Partyka, J. Organometallics 2002, 21, 1925-1932. (e) Sculfort, S.; Croizat, P.; Messaoudi, A.; Bénard, M.; Rohmer, M.-M.; Welter, R.; Braunstein, P. Angew. Chem., Int. Ed. 2009, 48, 9663-9667.
(3) (a) Murahashi, T.; Fujimoto, M.; Oka, M.; Hashimoto, Y.; Uemura, T.; Tatsumi, Y.; Nakao, Y.; Ikeda, A.; Sakaki, S.; Kurosawa, H. Science 2006, 313, 1104-1107. (b) Murahashi, T.; Inoue, R.; Usui, K.; Ogishi, S. J. Am. Chem. Soc. 2009, 131, 9888-9889.
(4) Cerrada, E.; Contel, M.; Valencia, A. D.; Laguna, M.; Gelbrich, T.; Hursthouse, M. B. Angew. Chem., Int. Ed. 2000, 39, 2353-2356.
(5) Reviews: (a) Ogino, H.; Tobita, H. Adv. Organomet. Chem. 1998, 42, 223-290. (b) Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. 1999, 99, 175-292. (c) Braunstein, P.; Boag, N. M. Angew. Chem., Int. Ed. 2001, 40, 2427-2433. (d) Osakada, K.; Tanabe, M. Bull. Chem. Soc. Jpn. 2005, 78, 1887-1898. (e) Shimada, S.; Tanaka, M. Coord. Chem. Rev. 2006, 250, 991-1011. (f) Waterman, R.; Hays, P. G.; Tilley, T. D. Acc. Chem. Res. 2007, 40, 712-719. (g) Corey, J. Y. Chem. Rev. 2011, 111, 863-1071.
(6) Ni: (a) Yang, J.; Rosal, I. D.; Fasulo, M.; Sangtrirutnugul, P.; Maron, L.; Tilley, T. D. Organometallics 2010, 29, 5544-5550. Pd:
(b) Chen, W.; Shimada, S.; Tanaka, M. Science 2002, 295, 308-310. Pt:
(c) Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 1917-1919.
(d) Osakada, K.; Tanabe, M.; Tanase, T. Angew. Chem., Int. Ed. 2000, 39, 4053-4055. (e) Braddock-Wilking, J.; Corey, J. Y.; Dill, K.; Rath, N. P. Organometallics 2002, 21, 5467-5469. (f) Arii, H.; Takahashi, M.; Nanjo, M.; Mochida, K. Organometallics 2009, 28, 4629-4631. Fe: (g) Hirotsu, M.; Nishida, T.; Sasaki, H.; Muraoka, T.; Yoshimura, T.; Ueno, K. Organometallics 2007, 26, 2495-2498.
(7) (a) Anema, S. G.; Lee, S. K.; Mackay, K. M.; Nicholson, B. K. J. Organomet. Chem. 1993, 444, 211-218. (b) Evans, C. E.; Harfoot, G. J.; McIndoe, J. S.; McAdam, C. J.; Mackay, K. M.; Nicholson, B. K.; Robinson, B. H.; van Tiel, M. L. J. Chem. Soc., Dalton Trans. 2002, 4678-4683.
(8) Shimada, S.; Li, Y.-H.; Choe, Y.-K.; Tanaka, M.; Bao, M.; Uchimaru, T. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 7758-7763.
(9) Arii, H.; Takahashi, M.; Nanjo, M.; Mochida, K. Organometallics 2011, 30, 917-920.
(10) Yamada, T.; Mawatari, A.; Tanabe, M.; Osakada, K.; Tanase, T. Angew. Chem., Int. Ed. 2009, 48, 568-571.
(11) For a triangular $\mathrm{Pd}_{3}$ complex with bridging germylene ligands, see: Campbell, G. K.; Hitchcock, P. B.; Lappert, M. F.; Misra, M. C. J. Organomet. Chem. 1985, 289, C1-C4.
(12) Tanabe, M.; Ishikawa, N.; Hanzawa, M.; Osakada, K. Organometallics 2008, 27, 5152-5158.
(13) Tanabe, M.; Hanzawa, M.; Osakada, K. Organometallics 2010, 29, 3535-3540.
(14) Tanabe, M.; Ishikawa, N.; Osakada, K. Organometallics 2006, 25, 796-798.
(15) Cygan, Z. T.; Bender, J. E., IV; Litz, K. E.; Kampf, J. W.; Banaszak Holl, M. M. Organometallics 2002, 21, 5373-5381.
(16) Frisch, M. J.; et al. Gaussian 09, revision B.01; Gaussian, Inc.: Wallingford, CT, 2009.
(17) Theoretical calculation of planar $\left[\mathrm{Ni}\left(\mathrm{SiH}_{2}\right)_{6}\right]$ was reported to form the planar $\mathrm{NiSi}_{6}$ core stabilized by the $\mathrm{Ni}-\mathrm{Si}$ and $\mathrm{Si}-\mathrm{Si}$ bonds. See: Tang, H.; Hoffman, D. M.; Albright, T. A.; Deng, H.; Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1993, 32, 1616-1618.
(18) We characterized $\left[\mathrm{Pd}\left(\mathrm{SC}_{6} \mathrm{H}_{4}{ }^{t} \mathrm{Bu}-4\right)_{2}(\right.$ dmpe $\left.)\right]$ by comparison of its NMR data with those of the complex which was isolated from the reaction of $\left[\mathrm{Pd}\left(\mathrm{SiHPh}_{2}\right)_{2}(\mathrm{dmpe})\right]$ with excess $\mathrm{HSC}_{6} \mathrm{H}_{4}{ }^{t} \mathrm{Bu}-4$. See Supporting Information.
(19) Okazaki, M.; Kimura, H.; Komuro, T.; Okada, H.; Tobita, H. Chem. Lett. 2007, 36, 990-991.
(20) Shimada, S.; Rao, M. L. N.; Tanaka, M. Organometallics 1999, 18, 291-293.
(21) Several other pathways also lead to the formation of 3. For example, the oxidative addition of thiol to a $\mathrm{Pd}-\mathrm{Pd}$ bond of 2 and the subsequent rearrangement of the complex would result in formation of 3 via the neutral intermediates corresponding to $\mathbf{A}-\mathbf{C}$.
(22) The reaction in eq 2 is formally reversible, but its detailed processes are different between the forward and the backward reactions. The reaction of dmpe with 3 forming tetranuclear 2 should involve a $\mathrm{Pd}(0)$-dmpe species that reacts with the hexanuclear or trinuclear Pd complexes. Direct elimination of the thiol from 3 upon coordination of the added dmpe may be responsible.
(23) Adams, R. D.; Pearl, W. C., Jr.; Wong, Y. O.; Zhang, Q.; Hall, M. B.; Walensky, J. R. J. Am. Chem. Soc. 2011, 133, 12994-12997.
(24) (a) Puddephatt, R. J.; Manojlovic-Muir, L.; Muir, K. W. Polyhedron 1990, 9, 2767-2802. (b) Imhof, D.; Venanzi, L. M. Chem. Soc. Rev. 1994, 185-193. (c) Burrows, A. D.; Mingos, D. M. P. Coord. Chem. Rev. 1996, 154, 19-69. (d) Burrows, A. D.; Jeffrey, J. G.; Machell, J. C.; Mingos, D. M. P. J. Organomet. Chem. 1991, 406, 399-408.
(25) There are several possible details of the dynamic behavior of 5 in solution because no coalescence signals were observed above $-90^{\circ} \mathrm{C}$. The dynamic motion of the AgI fragment in solution was suggested involving a rapid pivot motion over the NMR time scale, monodentate coordination of AgI to the Pd center, or the smooth dissociation/ recoordination of AgI to the $\mathrm{Pd}_{4} \mathrm{Ge}_{3}$ core.


[^0]:    Received: September 10, 2011
    Published: October 17, 2011

